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Abstract Two condilions of non-propagation of \\a\e modes arc' analped. flutter instability as
described by Rice (1970) and non proJ1agation due to dilferent algebraic and geometric multiplicity
in the eigenvalues of the acoustic tensor. Explicit reference is made to clastoplastic constitutive
operators at finite strains. Both loading and unloading branches of the constitutive operator are
analyzed. but thev are treated independent Iv (we disregard the interaction between loading and
unloading). The spectral analysis of Bigoni and Zaccaria (1'194) is generalized to examine an
unsymmetric acoLhtic tensor for the unloading branch of the constitutive operator. Two constitutive
laws for finite-strain elastoplasticity are considered. one of \\hich is widcly in use (Rudnicki and
Rice 1975). In both constitutive laws. unloading of the material follows a specific grade I-hypo­
elasticity. lacking in an) stress-rate J10tentiaL For these materials. we show that instabilities are
excluded in the unloading branch. whereas they remam possible in the loading braneh of the
elastoplastic constitulive operator Therefore. the geometrical terms of the constitutive equations
(when small compared to the clastic shear nwdulus) provide examples of perturbations which induce
flutter and non-propagation instability in elastoplastic·it\. vet IlavC no cflect on infinitesimal. three­
dimensionaL isotropic elasticity (\\here two wave speech ahvays coincide)

I Il\TRO[)l( TIO'\

There are four conditions under which some accderation wave modes cannot propagate;
each condition is related to the eigenvalues of the acoustic tensor (which can be unsymmetric
in the present context). These are:

one eigenvalue becomes zero.
one eigenvalue becomes negative.
two eigenvalues become complex conjugate.
an eigenvalue has algebraic multiplicity greater than geometric multiplicity.

The first possibility coincides with the condition for strain localization, which has been
analyzed thoroughly. In the present paper. only the last two possibilities are considered.

The condition for which an eigenvalue exhibits geometric multiplicity less than its
algebraic multiplicity passed unnoticed until the work by Brannon and Drugan (1993). We
interpret this phenomenon in the spirit of Mandel (1962. 1966) as a type of instability
(denoted here as lIoll-propagation instahilitl'). Little is known about this instability. In
particular, Brannon and Drugan (1993) showed that geometric and algebraic multiplicity
of the acoustic tensor eigenvalues coincide in the infinitesimal theory of plasticity in the
presence of deviatoric associativity.

The occurrence of complex conjugate eigcl1\alues in the acoustic tensor defines flutter
instability in continuous media. This terminology. derived from structural mechanics (Zie­
gler, 1956), was proposed by Rice (1976) with reference to the theory of nonassociative
plasticity. More recently, this instability has been analyzed for the infinitesimal theory of
plasticity (Loret et a/.. 1\)\)0: Lorct. 19(2). for specific finite strains theories of plasticity
(An and Schaeffer. 19\)2: Bigoni and Zaccaria. 1\)92, I\)\)4) and for an elastoplasticity
theory of fluid-saturated. porous media (Loret and Hariereche, ]\)91). In each of these
works, the conditions for flutter are analyzed \\ith reference to the loading branch of the
elastoplastic cOl1stituti\e operator.
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For a class of widely used two-dimensional. infinitesimal theories of plasticity, An and
Schaeffer (1992) demonstrated that the condition for onset of/furrer, i.e. coalescence of two
eigenvalues. can be encountered frequently. When two eigenvalues coincide. an appropriate,
arbitrarily small. perturbation can give rise to complex conjugate eigenvalues. and so trigger
flutter (from which the terminology "onset of flutter" is derived). However. for a three­
dimensional. infinitesimal theory of isotropic elasticity, two eigenvalues of the acoustic
tensor always coincide. Therefore. the question arises as to the relevant distinctions between
elastoplasticity and infinitesimal. isotropic elasticity in the context of flutter analysis. The
answer lies in the definition of the specific form of the perturbation inducing flutter. In
particular. Loret (1992) introduced the concept of a perturbation in the direction of the
plastic potential gradient. Such a perturbation, when non-coaxial with the yield function
gradient. can induce flutter even in the case of deviatoric associativity. An and Schaeffer
(1992) considered the geometrical terms of the constitutive laws at finite strains as per­
turbations. Finite strains theories of plasticity based on simple hypotheses have been
successfully employed in global and local stability analyses (Hill. 1962; Hutchinson. 1973;
Hutchinson and Miles. 1974; Rudnicki and Rice. 1975; StOren and Rice. 1975; Asaro and
Rice. 1977; Needleman and Rice. 1978; Vardoulakis et al.. 1978: Vardoulakis. 1981;
Raniecki. 1979; Raniecki and Bruhns. 1980; Vardoulakis, 1983; Chau and Rudnicki. 1990;
Bardet. 1991; An and Schaeffer. 1992: Chau, 1992). These theories have a common
structure which originates from the replacement of the usual stress rate in the constitutive
law of infinitesimal elastoplasticity by an objective rate of a symmetric stress measure. This
produces the so-called geometrical (or corotational) terms. Such terms are usually small
by comparison to the elastic shear modulus of the material; here they are interpreted as
perturbations to the infinitesimal theory. In flutter analysis, we are interested in the geo­
metrical terms which provide unsymmetrical perturbations in the acoustic tensor. For this
purpose. the model proposed by Rice and Rudnicki (1975) and later generalized in (Rice,
1976: Needleman and Rice. 1978; Rice and Rudnicki. 1980; Chau and Rudnicki. 1990,
Chau. 19(2) represents an interesting candidate for study.

As a general remark. we note that the physical meaning of flutter instability is generally
unknO\'in (apart from the non-propagation of some wave modes). Rice (1976) and Truesdell
and Noll (1965). argue that flutter in a continuous medium might correspond to an
increasing-with-time disturbance. Bigoni and Willis (1994) provide a confirmation and
clarification of this issue: they also show that flutter is connected to non-integrability of
governing differential equations.

In the present paper. the possibility of flutter and wave non-propagation instabilities
is analyzed for the loading and unloading branches of elastoplastic solids. However, the
branches arc analyzed independently. i.e. loading/unloading interaction during instability
is not considered. Geometrical terms which appear in approximate theories of finite strains
elastoplasticity are identified with the perturbations which can promote instability. When
considered as perturbations to the infinitesimal theory of isotropic elasticity. they are shown
to be incapable of inducing either flutter or non-propagation instability (Section 3). In
contrast. the same perturbations arc shown to generate instability on the loading branch of
elastoplastic constitutive operators (Sections 5 and 6). This result may clarify the difference
between the coincidence of two wave speeds in elastoplasticity or in other contexts (iso­
tropic. infinitesimal elasticity). Sections 4-6 examine the loading branch of constitutive
laws of elastoplastic solids. In particular. a generalization of the results by Bigoni and
Zaccaria (1994) to an unsymmetric acoustic tensor of the unloading branch of the consti­
tutive operator (Section 4) yields examples of flutter (Section 5) and wave non-propagation
instabilities (Section 6). presently induced by geometrical terms. The examples show that
both instabilities can manifest themselves in the Rudnicki and Rice model. This occurs
even for the associative flow rule. when the yield function gradient and the Cauchy stress
are not coaxial. e.g. in the important case of kinematic hardening. The instabilities only
take place when the hardening modulus reaches a critical value which may be greater than
the critical value for loss of second order work positive definiteness (Maier and Hueckel.
1979) or for strain localization (Rice. 1976). Moreover. special cases will be shown in which
the instabilities can occur when the yield function gradient and Cauchy stress are coaxial.
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Examples of wave non-propagation instability occur even when flutter is a priori excluded
(Sections 3. 6 and Appendix A).

:2 'JOTATION AND CONSTITUTIVf EQUATIONS

Reference is made to the Gurtin (1981) notation, which is briefly summarized hereafter.
A second order tensor is a linear transformation from the vector space '/ ' (associated

to the three-dimensional euclidean point space) into itself. The set of second order tensors
is denoted by Lin. and the subset of symmetric second order tensors by Sym. Elements of
'/' are denoted by bold face, small letters (a. b.... ). whereas members of Lin and Sym are
denoted by bold face, capital letters (A. B. ... ). The linear transformations from Lin into
Lin are fourth order tensors which are denoted by special capital letters (,e!, /iJ . ... ). The
(right-handed) cross product of vectors is denoted by symbol x and the modulus of a
vector (or of a scalar) by I-I. The tensor product of vectors a and b is defined by

(a®b)v=(b·v)a. VVE'f. ( I )

where' denotes the natural inner product of '/ . The tensor product [eqn (I)] is extended
to second order tensors in the usual way:

(A ® B)V = (B' V)A. 'IV E Lin. (2)

where' denotes the natural inner product of Lin, defined as A· B = tr(ATB). In addition to
eqn (2) we will make use of the following tensor product, which has been introduced by
Del Piero (1979) :

(A SJ B)V = AVB' . 'IV E Lin. (3)

If e, is a non-orthogonal basis and el its dual basis (i.e. e'· e, = (51" b', being the Kronecker
delta), the following representation of a second order tensor is possible

A = Li/(e" Ae,)e, ® e'.
I

(4)

where e'· Ael = Ail are the mixed components of A onto the dual bases e" e'.
The second order and the fourth-order identity tensors will be denoted by I and 5,

respectively. The symmetryzing operator /1' is defined by

'I A = (A + AT)2.liA E Lin. (5)

Two second order symmetric tensors A and B are defined coaxial if and only if they
commute (Ogden. 1984; Del Piero. 1989). i.e. :

A. BE Sym coaxial ¢> AB = BA.

Finally. the spectral radius p(A) of a second order tensor A E Lin is defined as

(6)

(7)

where :x, are the eigenvalues of A. It may be interesting to note that piA) is always not
greater than any matrix norm of [A] (Wilkinson. 1965: Salce. 1993).

A hypoelastic material of grade I. in the rl:'!(lfil'c Lagrangean dcscription, is defined by
the following constitutive tensor which relates the material derivative of the first Piola­
Kirchhoff stress tensor S (transpose of the nominal stress tensor used by Hill. 1978) to the
velocity gradient L:

s = ;,c[L]. (8)
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where T is the Cauchy stress, i. and p are linear functions of tr T, l/Jj are material constants
and g the fourth-order constitutive tensor.

The acoustic tensor of an hypoelastic material of grade I is defined, for every vector
g, by:

Therefore, from eqn (9) :

Adn)g = O'[g ® n]n. (10)

where:

(11 )

(
l/J

1

)p = p + :2 + In' Tn , (12)

The following elastoplastic constitutive equation (valid in the relatire Lagrangean
description) incorporates. as special cases. most of the simplified theories of finite-strain
elastoplasticity proposed in the literature:

. I
S = o[L]- <L'Q)P,

r;
(13)

where P and Q are the flow-mode tensor and the yield function gradient in the deformation
space. respectively. Moreover. g is tensor (9), which does not possess the minor and may
not possess the major symmetries as well. Finally, the scalar? is the plastic modulus
and the symbol ( ) denotes the Macaulay brackets, i.e. the operator ~ -> ,oJl+: (Vex E~)
(cx) = Sup[cx,O}.

It should be noted that, eqn (13) reduces to the hypoelastic law [eqn (8)] in case of
unloading (L' Q < 0) or neutral loading (L . Q = 0). In case of plastic loading (L' Q > 0),
eqn (13) can once again be interpreted as a hypoelastic law, when P, Q and T are coaxial.
In the following. the loading and unloading branches ofeqn (13) will be analyzed separately.

3. Al\ALYSIS OF THE ACOUSTIC TENSOR FOR HYPOELASTIC MATERIALS OF
GRADE I

In this section. the unloading branch of the constitutive equation (13), i.e. the hypo­
elastic grade I material [eqn (8)] is analyzed. In general, a hypoelastic material of grade 1
may have complex conjugate eigenvalues. Moreover, in cases of eigenvalues with algebraic
multiplicity 2 (and 3), the geometric multiplicity may be I (and 2 or I).

When coefficients ~'I are null and p = p. the acoustic tensor [eqn (II)] formally coincides
with that of the infinitesimal theory of isotropic elasticity. The tensor (11) represents the
acoustic tensor of the unloading branch of the constitutive equation in many approximate
theories of plasticity. In these theories i. + P is preponderant with respect to the coefficients
)'1 multiplied by the spectral radius of the Cauchy stress tensor. It may therefore be interesting
to know whether flutter and non-propagation instabilities are possible under this condition.
In other words, we will consider terms I'IT;k as perturbations to the infinitesimal theory of
isotropic elasticity and we will find, in the present section, that if these terms are sufficiently
small with respect to i. + J1. flutter and non-propagation instabilities are not possible.
Moreover, we will quantify the smallness of ~,tP(T) with respect to A+ II, as a condition
sufficient to exclude flutter and non-propagation instability. In closure of the section, some
results for hypoelastic materials of grade I will be presented, which hold regardless of the
magnitude of ~·p(T).
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In the following, the case that n lies in an eigenspace of T is never considered. In this
case, in fact, the acoustic tensor (11) becomes symmetric and therefore flutter and non­
propagation instabilities are excluded. Now, when n is not an eigenvector of T, we can
introduce the following orthonormal basis of 'I

rei = n,

n x (n x Tn)
e, = I = ------
- In x Tn! '

nxTn
e3 = m = ~Tnl'

In this basist, the hypoelastic acoustic tensor Adn) has components:

(14)

1·+11+/1+(;', +)'c+h)n'Tn

[A E] = (;'c + ;'JI' Tn

o

The characteristic equation can be written as:

(1'1 +1'3)n'TI

/1+1'31' TI

;'3 m - TI

(15)

+ /Ic +;'~[(I- TI)(m' Tm) - (m -TIf] + fll'3(1'TI+m -Tm)}

- (;', + i'J(;'c + ;'3 )(1- Tn)C (jH ohm -Tm -1/) = O. (16)

Now we assume that i. + P be preponderant with respect to coefficients (, multiplied by any
component of Cauchy stress. or in other words, that any term (p(T) be small with respect
to ). + p. Under this condition, one of the solutions to eqn (16) must be close to A+ P+ fl,
the others to p.

The next theorem is the central result of the section.

Proposition 1.
Flutter and non-propagation instability are excluded if coefficients (, are sufficiently

small with respect to I. + P divided by the spectral radius of the Cauchy stress tensor: in
particular, a sufficient condition to exclude flutter and wave non-propagation for any value
of coefficients Y, and components Tik is

1.+11 ~ 9.25"/p(T). (17)

where}' is the maximum of the absolute values of coefficients "I"~ i.e. i' = Max{jYII.IYcl.Ii'31}·

t Unit vectors e, depend on T. and the following relations hold true:

nx(nxTn) =(n'Tn)n-Tn,

/nx(nxTn)I = InxTni = y(n·T'n)-(D'Tn)'.

~ ----- -T'no(nxTn)
n·TI = - InoT'n)-(D'Tn)'. m·TI = ------

" . (n'T'n)-(noTn)'

(n 0 Tn)' -2(n 0 Tn)(n' T'n) +n' T'n
I·TI = ------,--.---..

(n' T:n) - (n' Tn)'

Note that the third relationship implies that n' TI cF 0 if and only if n is not in an eigenspace of T. Moreover.
m 0 TI can be zero even when n' TI cF O.
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Proof:
The polynomial of I], say!l'(I]L at the left hand side of eqn (16) can be written as follows:

I (I'TI-m'Tm J(I'TI-m'Tm)2 )Jx L'l-p-~';m'Tm-~') --- 2--- + - 2 +(m'TI)2

I (I . TI- m . Tm {(I' TI- m . Tm)2 J )J
x L}I-p-/;m'Tm-~') ---2- - ~ 2 +(m'TI)-

(18)

i.e. as the sum of a third and a first degree polynomial (Fig. I). The 3rd degree polynomial
has always three real roots (it is in fact the characteristic equation of the symmetric matrix
obtained from matrix (IS) by eliminating the non-symmetric terms), one of which is
i. +,u + P+ C'I + ~'2 + ~'l)n' Tn, and the other two are

o I 't [I . TI- m . Tm f(1 .TI- m . Tm)2 J
= ii+",m'Tm+" --------+ +(m'TI)'2 .

O
2

• t I' I ) 2 --V 2 (19)

The first degree polynomial in eqn (18) vanishes for a value of I] internal to the closed
interval defined by the two roots 0 1 and O 2, Thus, continuity of 21(1]) implies that a root
of the characteristic equation (16) is alwa!'s internal to the closed interval defined by 0 1 and
O 2 (see Fig. I). Noting that

and introducing the change of variable: I] = p+'{')(I'TI+m'Tm);2+yp(T)x, !l(I])
becomes:

rIoTI+ m . Tm J
.:P(y) = Li. + JI + (~l -r ~'2 + 'i))n' Tn - ~.) ---2-- - xiP(T)

r (I . TI- m . Tm)2 JX
LC'p(T)x)2- '-2--- -(m o TJ)2

(21)

\ 3rd degree poly~omial

151 degree polynomial

Fig I, Schematic representation of the two polynomials which define ;7(1/).
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For J2 < x < p. + /1- 4}'P(T)]/(yp(T)), the following inequality holds true

3173

,eJ'(x) ~ [1.+/1-yp(T)(x+4)][x" -2][('p(T))" -4[yp(T)]'(x+ 1). (22)

Now, for x = 3.25, the right hand side of inequality (22) is not less than zero if
A+/l ~ 9.235('p(T). For x = 3.25 and I.+p ~ 9.235yp(T), the inequality j2yp(T)
< xyp(T) < i. + /l- 4}'p(T) is verified. Therefore, if i. + ~l ~ 9.235yp(T), &(1]) = +Xi for
I] ----t - Xi, :JJ(I]) = 0 for I] E [8 1, 8"], 21(1]) ~ 0 for I] > 8 2 and, finally, :JJ(I]) = - 00 for
I] ----t + oc. This means that eqn (16) has three real roots if condition (17) holds true. Now
we have to consider the possibility of different geometric and algebraic multiplicities
of eigenvalues of matrix (15).

When inequality (17) holds true, the only possibility of coincident roots of eqn (16) is
that &(1]) has a minimum in correspondence of a root of eqn (16) not greater than
P+Y3(I·TJ+m·Tm)/2+j2rp(T). This root is necessarily equal to P+Y3m'Tm (see Fig.
1). This may occur if and only if

;'1 = 0 or I'Tm = O. (23)

In this condition, it can be verified by direct inspection of matrix (15) that the algebraic
multiplicity of the double eigenvalue must coincide with the geometric one. Therefore, non­
propagation instability is excluded. •

The order of magnitude ofi'P(T)/(i.+~I) is typically 0.001-0.01 in many finite strains
plasticity theories, therefore the bound (17) can be considered satisfactory.

It should be noted that peT) can be replaced in inequality (17) by any matrix norm of
[T] (thus obtaining a less stringent condition). The following remarks of this section concern
the possibility of flutter and non-propagation instability in an hypoelastic material of grade
1 without any assumption about the magnitude of coefficients y,Tik . The next three remarks
are examples of flutter and non-propagation instabilities in hypoelastic materials.

Remark I. For a generic hypoelastic material of grade I, flutter and non propagation
instability may occur. In particular, we can construct examples of flutter and wave non­
propagation, for certain values of coefficients ';'i' components Tib when

I.+p:;:; 2i'P(T). (24)

Prool: This remark can be proved just showing an example. To this purpose, let us
introduce the orthogonal basis defined presently by n, sand r, where sand r are arbitrary
unit vectors mutually orthogonal and orthogonal to n. The acoustic tensor [eqn (II)] can
be projected onto this basis, thus obtaining

[

/,+P+P+(;'I.+. ;'2 +i01)n'Tn

[A E] = (j'"+}'1)s'Tn

(;'" +Y3)r'Tn

(';'[ +}'In'Ts

P+Y3 s ' Ts

}'3 r ' Ts

(}'I +h)n'Trj
('3 s ' Tr ,

P+Y3 r 'Tr

(25)

which, for p = p, i. = ;'3 = n'Tn = s'Ts = r'Tr = n'Tr = s·Tr = 0, 1'1 = n'Ts = 1,
1'2 = - 1 becomes

2~1 0

-I ~l 0

o 0 p

(26)

Matrix (26) is positive defined and has complex eigenvalues, when /l < 2 and has an
eigenvalue with algebraic multiplicity 2 and geometric multiplicity 1, when p = 2. Note that
(being n'Tn = s'Ts = r'Tr = n'Tr = s'Tr = 0 and n'Ts = I) peT) = I; moreover it is
Y = I, and, therefore, flutter is possible when condition (24) is satisfied. •
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Remark 2. Even when flutter is a priori excluded, the geometric multiplicity of some
eigenvalues may be less than the algebraic multiplicity.

Proof: This remark can be proved just showing an example. To this purpose, let us
assume:

}'2 = h = 0, (27)

so that flutter is a priori excluded. Under conditions (27), the characteristic equation (16)
yields:

(28)

The eigenvector problem associated to YJI can be formulated as follows:

(29)

which has the solution v = n. The eigenvector problem associated to '711 can be formulated
as follows:

(30)

which can be projected onto n to obtain

(31 )

I.e. :

(32)

From eqn (32) it can be concluded that the (right) eigenvectors are orthogonal to the
following vector:

(33)

Now, if YJI = YJII = YJIII' i.e. if:

the eigenplane defined by eqn (32) becomes:

'/1 [n x (n x Tn)] . v = 0,

(34)

(35)

and, therefore, it contains n. Thus, the eigenvalue YJ has now algebraic multiplicity three
and geometric multiplicity two. •

Remark 3. For hypoelasticity of grade 1, the acoustic tensor may have one eigenvalue
of algebraic multiplicity 3 and geometric multiplicity I. In this condition only one wave
amplitude is possible, corresponding to the only eigenvector.

Proof: This remark can be proved just showing an example. The representation (25)
of the acoustic tensor becomes (for an appropriate choice of T, n, S, r and I" /1, fl, I;) :
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[-~
7

40;7

_ (24' 2+864 12 )/35

(36)

which has only one eigenvalue, equal to 2, of algebraic multiplicity 3 and geometric
multiplicity I. The only (right) eigenspace is the straight line corresponding to the direction
[-7j6, -)24,12]. •

Remark 4. Any condition

/ I - 11,

(37)

is sufficient to exclude flutter.
Proof: (37)d37h directly follow from representation (15) or (25). (37)4 can be

obtained by observing that polynomial (18) is positive when 1'/ -> - wand negative when
1'/ -> +XJ. Moreover, when (/'1 + 1,)(Y2+ I,) > 0, polynomial (18) is negative at 1'/ = 8 1and
positive at 1'/ = 8 2, therefore it must have three real roots. •

It should be noted that for the unloading branch of the elastoplastic model introduced by
Rudnicki and Rice (1975), in which the Jaumann derivative of Cauchy stress is isotropically
related to the velocity of deformation, coefficients 'Ii result to be: II = Y3 = -Yz = -1/2.
Therefore, flutter is excluded (but not for the plastic branch, as will be discussed in Section
5).

Let us now turn the attention to the following submatrix obtained from matrix (15) :

(38)

which is symmetric and has (real) eigenvalues, which are 8 1 and 8 2 given by eqn (19).
Therefore, a rotation matrix does exist, for which:

[~
o o o

i+ II + P+ C'I +'1'2 +i',)n -Tn
1'11(;'2+i',)I-Tn

1'21 (i'2 + i', )1- Tn

I'll (}'I +}',)n -Tl
8 1

o

r21(YI +Y3)n'Tlj
o .

8 2

(39)

In this case, the characteristic equation (16) becomes:

(8 1-1'/)(8 2 -I'/)[),+ /1+P+ (11 +1'2 +Y,)n •Tn-I'/]

- (/1 +}\)(/2 +1,)(I'Tn)2[I'L (82-I'/)+dl (8 1-1'/)] = 0, (40)

from which it can be inferred the following remark.



3176

Remark 5. Any condition
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/1 = 0,

i'l +/1 = 0,

i'2 +i'1 = 0,

I'Tm =0,

8 1 = 8,-

~/ I - i ~. (41)

is sufficient to exclude geometric multiplicity I for an eigenvalue of algebraic multiplicity
3.

Proof: Cases (3 = 0, '1.'1 = '/2 and l' Tm = °can be trivially deduced from matrix (IS),
so that cases (I +(3 = 0, i'2+i'3 = °and 8 1 = 8 2 only merit to be analyzed.

In the case i'l +Y3 = 0, the characteristic equation (40) has solutions!J1 = 8j, !J1l = 8 2
and !Jill = ;, + JI + f1 + )'2n . Tn. When !JI = !JII = !JIll, the eigenvector problem in the same
basis of matrix (39) is

0 0 °['I'll ('12 +i';)I'Tn 0 0 1"1 = [0). (42)

r21(h+i';)I'Tn 0 0 t

Therefore, the two linearly independent solutions [0, 1, 0) and [0, 0, I] are always possible,
The case Y2 + r3 = 0 is analogous.

In the case 8 1 = 8 2, from eqn (40) it is observed that !JI = 8 1 is an eigenvalue and
thus matrix (38) is diagonaL Therefore r ll = r22 = I and r21 = r l2 = O. In addition to!JI = 0j,
the characteristic equation (40) has now solutions:

(43)

where L1 = [;,+,u+fl+(YI+i'2+i'Jln·Tn-8r+4(i'I+(3)«(2+1'3)(I·Tn)2. If !JI =!J1l =
!Jill = 8 1, the conditions 8 1= ;,+p+ fl+ (('I +'/2+'/1)n' Tn and L1 = 0 must hold true, which
imply:

(44)

and therefore one of conditions (41 21 ) must be verified. This means that (41 5) is equivalent
to one of conditions (41 23), •

Remark 6. From Remarks (4) and (5), any condition

__ I - I ~ ~

i'l +i'; = O.

i'2 +i'3 = 0, (45)

is sufficient to exclude flutter and geometric multiplicity I for triple eigenvalues.
Note however that conditions (45h and (45); are not sufficient to exclude multiplicity

I (2) for double (triple) eigenvalues, see Remark 2.
In closure of this section we want to stress that, if coefficients i'10k ofgrade I hypoelastic

materials are taken as pertubations to the infinitesimal theory of elasticity, flutter and non­
propagation instabilities are excluded. This result is of some relevance for the theories of
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plasticity which will be presented in the next section. For these theories, flutter and non­
propagation instability are excluded in the unloading branch of the constitutive operator,
but may occur in the loading branch.

4. EIGENVALUE PROBLEM OF THE ACOUSTIC TEf\;SOR FOR FINITE STRAIl\'S
ELASTOPLASTICITY

In this section the solution to the eigenvalue problem proposed by Bigoni and Zaccaria
(1994) for generic finite strains elastoplasticity is generalized by taking into account the
possibility of a non-symmetric acoustic tensor of the unloading branch of the constitutive
operator, as in the case of the acoustic tensor (II). The analysis which follows yields the
eigenvalues of the acoustic tensor and the condition for flutter for a quite general elasto­
plastic solid under the hypothesis that an acoustical axis/or H'(wes travelling in the direction
o corresponds to a neutral plastic wave. Moreover, the analysis is valid, without restrictions,
for two-dimensional theories of plasticity. Reference is made to the loading branch of
constitutive equation (13) (comparison solid of Hill, 1958). The eigenvalue problem for the
acoustic tensor corresponding to the loading branch of the constitutive equation (13) can
be written as:

where:

q = Qo, p = Po, AE(o)v = 6'[v ® 0]0 (VVE'I).

(46)

(47)

It is assumed that flutter and non-propagation instability are excluded for the unloading
branch of the constitutive operator. In other words, it is assumed that the hypoelastic
acoustic tensor AE possesses the left linearly independent eigenvectors ai, a1 , a3 and thus the
corresponding right eigenvectors ai, a", a3

. The scalars ~I' ~1 and ~3 denote the corresponding
eigenvalues, which are supposed to be real. Moreover, it is assumed that the triplet:

(48)

forms a linearly independent system of vectors (see Appendix A for the case when this
condition is not satisfied). The dual basis of basis (48) can be written in the form:

al'q , I I- ---"'-- a- + _... a
(a l 'a l )(a 2 'q) (a l 'a l

) •

, I ,
e' = -,-" a-,

a-'q

a 3 'q
e·1 = _ -----a2 + a3 .

(a 3 • a3 )(a 2
• q) (a l • a3

)

(49)

It is important to note that vectors a, and a' are not restricted in modulus, so that a, ' a' can
be different from unity. Expressing the generic vector v in the basis (49) and projecting the
eigenvalue problem (46) onto the basis (48), the characteristic equation is obtained in the
form:
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I
- -p'a l

'1

I
CI" - -P'q -11

fj

o

= O. (50)

From condition (50), a third order algebraic equation can be easily obtained which,
in general, has three solutions '110 '1", Ih different from the eigenvalues of the elastic acoustic
tensor ClI' CI", CI,. If a neutral plastic wave is assumed to be possible, corresponding, say, to
the eigenvalue ClJ (and thus to amplitude aJ

), this eigenvalue must be a solution of eqn (50).
This circumstance occurs if:

(51 )

Condition (51) is valid when the hypoelastic acoustic tensor has two coincident eigenvalues,
or for p or q ranging in the planes orthogonal to a, and a1

, respectively. Using eqn (51),
eqn (50) yields the following equation:

(52)

The second degree polynomial in eqn (52) could be directly obtained for two-dimensional
theories of plasticity. The discriminant of the second degree polynomial in eqn (52) can be
written as:

(53)

or, equivalently:

(54)

where:

(55)

is the critical wlue oj' the plastic modulusj(n' the localization olde/()rmation into planar bands
oj'normal (unit) rector n (Rice, 1976).

Equation (54) shows that, if ClICI" > 0 (as in the case when the elastic acoustic tensor is
positive definite), .flutter in a given direction n cannot occur.f()r values oj' the plastic modulus
less than or equal to the critical plastic modulus/()r strain localization in that directiont. From
eqn (53) the following necessary and sufficient condition for flutter is obtained:

t It may be important to stress that strain localization might occur before flutter in a different direction.
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(56)

When flutter occurs for positive values of the plastic modulus '/' condition (56) becomes:

(al'p)(al'q)
(:XI -:x,) . ---- > 0 and

- a l . a I
(57)

When condition (57) is satisfied. flutter occurs for values of the plastic modulus (j within
the following interval:

The results obtained in this section are a generalization of those obtained in (Bigoni and
Zaccaria, 1994). The possibility of taking into account non-symmetric acoustic tensors of
the unloading branch of constitutive eqn (13), allows us to solve the eigenvalue problem
for a wide class of constitutive equations.

5. ON CO!v1PLEX EIGDIVALUES FOR TWO MODELS OF ELASTOPLASTICITY

In this section, the previously derived formulae will be applied to two different consti­
tutive models of elastoplasticity at finite strains. In particular. the spectral analysis will be
performed and the condition for flutter will be obtained and discussed. The examples show
that, even in cases where flutter instability is excluded in the infinitesimal theory, this
instability may indeed occur as a consequence of unsymmetrical geometrical terms in the
constitutive equation. which can be regarded as perturbations to the infinitesimal theory of
elastoplasticity.

First constitl/th'r: l11oc!r:1
The first considered constitutive model is obtained by postulating the following

relationship between the Oldroyd derivative of Cauchy stress T and the velocity of defor­
mation 0:

It = iJrD+2pD- (D·Q)P.
'/

(59)

where i. and II are the Lame constants. A constitutive equation similar to eqn (59) in which,
however, the Cauchy stress is replaced by the Kirchhoff stress, has been used by Hill (1962)
and Hutchinson and Miles (1974). It is well known that the differences between Cauchy
and Kirchhoff stress measures vanish in the case of isochoric deformations (as, for instance,
in Hill and Hutchinson, 1975). On the other hand. in the presence of volumetric defor­
mations, the constitutive equation (59) yields an unsymmetrical acoustic tensor (even for
associative flow rule during both loading and unloading). The same circumstance occurs
in the case of the constitutive equation identical to eqn (59). with the Oldroyd derivative
replaced by the Jaumann derivative (Rudnicki and Rice model). The constitutive equation
(59) becomes (the relative Lagrangean description is assumed) :

. I
S = [iJ ® 1+ 2pY' + I [SJ T + T ® I][L] - - (Q' D)P,

'1
(60)

Note that the geometrical terms at the right hand side of eqn (60) have neither the minor,
nor the major symmetries and can be interpreted as perturbations to the infinitesimal theory

SAS 32-21-H
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of e1astoplasticity. From eqn (60). the acoustic tensor corresponding to unloading and
neutral loading takes the form:

AI (n) = (i. + il)n ® n + Tn ® n + (f.1 + n' Tn)I, (61)

and therefore flutter is excluded and non-propagation instability can occur for non small
values of p(T).(i.+ ill (see Section 3). A spectral analysis of AE reveals the following
eigenvalues and eigenvectors:

1.[ = i.+2f.1+2n·Tn,

Ia[ = n.

la, =(a: ·Tn)n-(i.+f.1+ n · Tn)a:,

a, =(a' ·Tn)n-(i.+i1+n·Tn)a\

I i.+ f.1 I
a = n+ ·---Tn

i. + p + n . Tn ), + f.1 + n . Tn '

(62)

(63)

where s is any unit vector orthogonal to n. Condition (51) IS satisfied and the flutter
condition (57) becomes (i. + il + n' Tn > 0 is assumed) :

p'n
(p' n)(q 'n)+ -. '-..--- [q' Tn-(q 'n)(n'Tn)] > O.

1.+p+n·Tn

p'n
(p 'n)(q' n) - p' q+ . ----- [q 'Tn- (q' n)(n . Tn)] > O.

1_+f.1+ n 'Tn

(64)

If P. Q and T have a common eigenvector, the left hand side of inequality (64:) vanishes
for n parallel to that eigenvector. Therefore, in this case, the condition of coalescence of
two eigenvalues of the acoustic tensor can always be met at an appropriate value of the
plastic modulus. Moreover. it is important to note that if the terms divided by;. + f.1 +n' Tn
are neglected. conditions (64) become the conditions for flutter of the infinitesimal theory
(Loret Cl al.. 1990). The terms divided by ;.+il+n·Tn are generally small with respect to
the others and can be considered as a perturbation. Let us restrict our study to the case of
associalirefi(nr-Imr: p = q. Inequality (64 1 ) is always satisfied ifq' n is sufficiently far from
zero. Inequality (64,) becomes:

q'n
(q·n)2_ q . q + .-- [q'Tn-(q'n)(n'Tn)] > O.

I.+il+n ·Tn
(65)

Condition (65) can be satisfied when q and n tend to become parallel (n x q -> 0), i.e. n
tends to coincide with an eigenvector of Q. Condition (65) can be rewritten as:

[
n'Qn J[n(n'Qn)-Qn]' Qn- ;----TTn >0,

I.+p+n· n
(66)

from which it is evident that 1\'hcn Q and T are not coaxial, flutter is always possible for
directions n close to the eigenvectors of Q [for values of the plastic modulus internal to
interval (58)]. It is important to note that, in this case, flutter is always possible for every
given Q. i.e. regardless to the form of the yield surface. By imposing that n be an eigenvalue
of Q. it is possible to obtain. from eqn (58), the critical plastic modulus for flutter:
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n,1 1,+ p+n i ' Tn,
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(67)

where nj are the three (unit) eigenvectors ofQ. The critical plastic modulus (67) is generally
higher than the critical plastic modulus for strain localization and may be higher than the
critical plastic modulus for loss of second order work positive definiteness (Maier and
Hueckel, 1979). Trying to clarify the present discussion with an example, let us consider
the case of the Jrflow theory, for the uniaxial compression stress state. We assume also
;. = °and neglect the term n . Tn with respect to p. In these conditions the eigenvectors of
Q are {-p2!j3,pIJi plj3}, therefore 9f! = p4/3. The critical hardening modulus for
flutter turns out to be An = p/3. Therefore, flutter occurs during positive hardening, con­
siderably before strain localization (which occurs during strain softening, see Rudnicki and
Rice, 1975) and before loss of second order work positive definiteness (which occurs at
A = 0, see Fig. 2, where IT II and Ell are the infinitesimal measures of stress and strain in
uniaxial compression).

Besides the case in which Q and T are not coaxial there is, however, another possibility
for flutter. Under special circumstances, in fact. condition (65) can be satisfied even if Q
and T are coaxial. To this purpose, let us assume the following representation of Q :

(68)

where .; and E are generic isotropic scalar functions of the Cauchy stress T. By substituting
eqn (68) into condition (66), the following condition for flutter is obtained (A +P+n' Tn > °
is assumed) :

[Tn'Tn-(n'Tnn[-v+p<: + n> 0. (69)

__..._ ....~st"'ra"'in.'2localizalion

Condition (69) is satisfied when I:!~' E (0, IIV +p)). The last condition can be satisfied when
the yield function gradient tends to become isotropic and the stress tensor does not, i.e.
when E!i approaches 0+ or 0- (with n not in an eigenspace of T). This may occur, when
the yield surface tends to become orthogonal to the hydrostatic axis. This circumstance
occurs independently of the propagation direction n. There/oreJor special shapes of the yield
sur/ace and for certain stress states, flutter can occur for every direction of n (except for
Tn x n = 0). This fact implies that in this case flutter instability occurs before strain local­
ization into planar bands.

Moreover, flutter can also occur if two eigenvalues of Q tend to coalesce and this
tendency is not followed by T. This has been shown by Bigoni and Zaccaria (1994), by
employing perturbations to Q. Anyway, parallel argumentations can be used in the present
context.

f'LJtter instabili!Y
\ loss of second order work positiveness

(J11 ~ \

hardenin\? softenin\?

-l- ._ -------.
Fig. 2. Schematic representatlOn of the occurrence of flutter instability. loss of second order work
positive definiteness and strain localization. Reference is made to the ~niaxial compression test for

the J, flow theory (compressive strain and stress are taken as positive).
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For the analyzed constitutive equation, flutter seems to be an important issue of the
hypoelastic character of the unloading branch of the constitutive operator. In fact, it has
been shown that flutter can always occur if the yield function gradient and the Cauchy
stress are not coaxial, even in the case of associative flow rule. Finally, it may be important
to note that we have focussed on the associative flow rule because we argue that non­
associativity should make the material even more prone to flutter instability.

Second constitutire model
The first constitutive model was selected because it gives a simple example of unsym­

metrical perturbation of the infinitesimal theory. That model is, however, not diffused in
literature. A widely used model is that proposed by Rudnicki and Rice (1975):

~ I
1 = i. tr D+2pD--(D'Q)P,

If
(70)

where f denotes the Jaumann derivative of Cauchy stress. For this model, it was proved
by An and Schaeffer (1992) that flutter instability may be caused, in plane strain, by
noncoaxiality of yield function gradient and Cauchy stress. We show in the following that
flutter may occur, for special shapes of the yield surface, even in the case of coaxiality. The
constitutive equation (70) can be transformed in the form given by eqn (13) (the relative
Lagrangean description is assumed) :

. I
S = [i.I ® I + 2~1,'1' - (I IZJ T + T IZJ 1)51' + I IZJ T + T ® I][L] - - (Q' D)P. (71)

If

The acoustic tensor for unloading or neutral loading is now given by:

Af(n) = U+ pin ® n+ pl+~ [(n' Tn)1 +Tn ® n-n ® Tn- T}, (72)

and therefore flutter is excluded and non-propagation instability can occur for non small
values of p(T)U+~/) (see Section 3). The flutter analysis of model (71) will be restricted
to the case in which tensor T is axially-symmetric, i.e. :

(73)

where T i are the eigenvalues ofT, and t corresponds to the linear eigenspace ofT. Moreover,
it is assumed that Q and T are coaxial and, in particular. that Q is an isotropic function of
T. Therefore:

(74)

where ~ 1 and ~c are generic isotropic scalar functions of the Cauchy stress T. By using eqn
(73), eqn (72) becomes:

The eigenvalue analysis of tensor (75) gives (see Appendix B):

Y 1 = i.+2/1,
, 1

Y, = /1+(T1-Tc)(t'n)--::2(TI-T2)"

1 ,

Y, = P+::2(TI -T2)(t'n)-

(76)

Moreover, the following eigenvectors can be obtained by direct inspection of tensor (75) :
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(77)

From eqns (77) and (74) it is concluded that q' a' = 0 and thus condition (51) is satisfied.
In order to perform flutter analysis. the expression of aj is needed. Such an expression is
obtained in Appendix C in the form:

(78)

where:

(79)

The necessary and sufficient conditions for flutter (57) become (CXI - CX2 > 0 is assumed) :

(T I -T,)
(p'n)(q'n)-p'q+ , _- (t·n)(q·n)[(t·n)(p·n)-p·t] >0.

I.+p
(80)

The geometrical terms in conditions (80) are generally small with respect to the others and
can be considered as a perturbation. In the particular case of associath'c flow-law, p = q,
conditions (80) can be satisfied for n sufficiently close to an eigenvector of Q. In fact, for
these vectors n, condition (80 1 ) is satisfied. Moreover. it is possible to transform condition
(802), using eqn (74), in the form:

(81 )

Inequality (81) can be satisfied when ~2!~ I approaches O. This last possibility is analogous
to that obtained for the previous constitutive model when Q tends to an isotropic tensor
and T does not. This may be the case of a cap. a tension cut off or. in plane stress, the case
of a yield surface which smoothly approaches the Hill criterion. An and Schaeffer (1992)
have analyzed a model of the type given by eqn (70) in the case ofa Jrtype, two-dimensional
theory of plasticity. In that case, the circumstance that Q tends to become isotropic and T
does not, is a priori excluded. Therefore, the present results are not in contrast with those
of An and Schaeffer (1992).

6. O~ "WAVE ~ON-PROPAGATlON" I~STAB[LITY IN ELASTOPLASTICITY

Let us start by analyzing non-propagation instability for the loading branch of ela­
stoplastic constitutive tensor at small strains. In this case, the acoustic tensor is:

, I
A(n) = (/·+ll)n ® n+I/I- - P ® q.

r;

and the conditions for flutter are (Loret et aL 1990) :

(82)
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{
(pon)(qon) > 0

(p'n)(qon)-p'q > 0,
(83)

with the plastic modulus belonging to the interval:

Y'I} I r - l2= -,-- " (pon)(qon)±y (pon)(qon)-p'q
Y'2~ I.+/l

(84)

Let us examine wave non-propagation instability, The case when n is an eigenvector of
both P and Q will be not considered: in fact A(n) becomes in this case symmetric. Moreover,
it should be noted that the basis (48) can always be chosen to make po 3, = O. Therefore, if
the acoustic tensor (82) has two eigenvalues equal to 11, non-propagation instability does
not occur. Finally, when n is not an eigenvector of Q, non-propagation instability occurs
if matrix

I
i.+211 ~ -pon

{/
(85)

is not diagonal and has two equal eigenvalues. If n is an eigenvector of Q (but not of P),
non-propagation instability occurs if matrix

. I
I. +2/l- - P 0 q

(/

I. nx(nxp)- -(qon)po _
'1 Inx(nxp)1

(86)

is not diagonal and has two equal eigenvalues. The coincidence of the eigenvalues of
matrices (85) or (86) occurs when one of left hand sides of conditions (83) becomes zero.
Using this condition, the critical values of the plastic modulus may be obtained from eqn
(84). Therefore necessary and sufficient conditions for non-propagation instability are:

(
(P 0 n)(q 0 n) = po q and '1 = po q/(i. + II.) or) and

(p' n =1= 0 or q' n =1= 0), if n x q =1= 0,
(pon)(q'n) = Oand 7 = -poq/(i·+/l)

r; = p 'q(i.+p) and (p x n) =1= O. ifnxq=O.

(87)

From condition (87) we can note that, for nonassociative plasticity when Q has at least an
eigenvector which is not an eigenvector of P. non-propagation instability occurs at the
critical value of plastic modulus{/cr = P'q/(i.+Il). This occurs when P and Q are not
coaxial, but may occur even in the case of coaxiality. This is once more the case in which
only one of tensors P and Q is an isotropic tensor. For instance, let us introduce tensors P
and Q in the following way:

(88)

where the ~iS are scalar parameters. possibly depending on the invariants of T. In these
conditions flutter is a priori excluded when ~I(' ): O. However, if (I = 0 and (, =1= 0, at the
critical value of the plastic modulus Y'LT = (2(n 0 Pn)/(i, + p), the acoustic tensor becomes:
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;, +,u
A(n) = (1.+ ,u)n ® n+ pl- --P- Pn ® n,

n' n

3185

(89)

which has, for any n (not in an eigenspace of P), one eigenvalue equal to p with algebraic
multiplicity 3 and geometric multiplicity 2. The fact that the non-propagation instability
occurs at {lcr for every 0 (except those n for which Po x 0 = 0) implies that this instability
occurs before strain localization into planar bands. Therefore, the example shows that non­
propagation instability may occur be/ore strain localization. Moreover, the example confirms
what we observed in the case of grade I hypoelasticity (Remark 2 of Section 3) : the non­
propagation 0/ the acceleration waves may become possible even ifflutter is excluded.

]n the case of deviatoric associativity, condition (p' n)(q' 0) = p' q can be verified if
and only if n is an eigenvector of both P and Q. Moreover, if p' n = 0 (or q' 0 = 0), it is
P' q ~ 0, so that {ler ~ O. Thus, in the case 0/ the infinitesimal theory, non propagation
instability is excluded/or deviatoric associativity and positive wlues 0/ the plastic modulus.
However, non-propagation instability becomes possible for deviatoric associativity if
unsymmetric geometrical terms are taken into account in the constitutive law. This is the
case of the two models presented in the previous section, even though we restrict ourselves
to the associative flow-rule.

In the case of the first model, basis (48) can always be chosen to make p' 3 3 = o.
Therefore, as in the case of the infinitesimal theory. for 0 x q -1= 0, non-propagation insta­
bility can occur when the left hand side of inequality (64 1), or inequality (642). becomes
zero. at one of the two critical values of plastic modulus which may be obtained from eqn
(58), by imposing {II = !fl. Let us analyze the case 0 x q = 0, for associative plasticity. ]n
this case, n coincides with an eigenvector of Q. the left hand side of inequality (642) vanishes
and, therefore, at least two eigenvalues of the acoustic tensor coincide. ]n this condition, if
Q has an eigenvector not in an eigenspace ofT (as in the non-coaxial case), non-propagation
instability may occur. In fact. the acoustic tensor, at{ler = q . q!(}. + p + O' Tn), can be
written in the form:

A(o) = - (n . Tn)o ® n + To ® n + (p + 0 . Tn)], (90)

which has the eigenvalue ~l + O' To with algebraic multiplicity 3 and geometric multiplicity
equal to 2 (unless 0 is in an eigenspace of T). Therefore, when T and Q are not coaxial,
wave non-propagation instability occurs in the model given by eqn (60) with associative
flow rule, at ger = q' q/(I. +,u + n' To), with 0 in an eigenspace of Q.

In the case of the Rudnicki and Rice constitutive model [eqn (70)], a complete analysis
of non-propagation instability may be complicated. Anyway, it is easy to show that this
instability can occur. For nonassociative elastoplasticity, let 0 be in an eigenspace of both
P and Q, not coincident with an eigenspace of T. The acoustic tensor can thus be written
as (Qn = qo and Po = po)

(91 )

i.e. in the form (11) with I. + P replaced by Jc + p-pq/{I' and where fJ. = ,u + O' To!2, and
fl = }'3 = -}'2 = -1/2. In these conditions flutter instability is excluded by Remark 4, as
well as geometric multiplicity one for a triple eigenvalue (Remark 5)t. However, the critical
plastic modulus for non-propagation instability, which corresponds to a double eigenvalue
with single geometric multiplicity, can be directly obtained from representation (16), result­
ing in

t These instahilities could obviously occur for n in the neighbourhood of the eigenvectors of P and Q.
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When r; = '1cr and excluding the very particular caset

pq n'Tn+m'Tm
] 'Tm = ;.+,11- - -------- = 0 and m'Tm i= I'TI,

'1 2

non-propagation instability occurs if n' TI i= 0 (see (15)). i.e. if n does not belong to an
eigenspace of T. Note that the term ;. +,11 is usually preponderant with respect to the others
in brackets, thus the critical plastic modulus is positive for pq> 0, as in the case of
associative flow rule.

We can conclude from the above reported examples that, similarly to flutter. non­
propagation instability may be triggered by small geometrical terms added to the infini­
tesimal elastoplasticity. This is however not the case of infinitesimal elasticity.

In conclusion of this section. we will suggest the use of a general necessary and sufficient
condition for wave non-propagation instability. In the case of one eigenvalue with algebraic
multiplicity equal to three, non-propagation instability is possible if the acoustic tensor is
not isotropic. In the case of a double eigenvalue, say. r/I = '111 i= '11110 it can be noted that an
endomorphism has a diagonal matrix if and only if its minimal polynomial can be factored
into distinct factors all of the first degree (Bowen and Wang. 1976. Theorem 30.8). An
immediate consequence is that the algebraic and the geometric multiplicities of '11 = '111
coincide if and only if

(93)

which can be rewritten in the useful form

(94)

Condition (93) or (94) is a necessary and sufficient condition to exclude non-propagation
instabilities.

7. CONCLUSIONS

The loading and unloading branches of two elastoplastic constitutive models for finite
strains have been analyzed from the viewpoint of flutter instability. A related wave non­
propagation condition has been also analyzed. which corresponds to the occurrence of
different geometric and algebraic multiplicity in the eigenvalues of the acoustic tensor.

Results of this study suggest that the occurrence of equal wave speeds may be viewed
as a type of material instability in infinitesimal elastoplasticity and may not be considered
an instability in other contexts (in particular we refer to infinitesimal. three-dimensional.
isotropic elasticity). To this purpose we have defined types of perturbation to both infini­
tesimal elastoplasticity and isotropic elasticity. These perturbations have a clear physical
meaning: namely, they may be identified with the so called geometrical (or corotational)
terms in finite strains theories of elastoplasticity. Therefore. the considered perturbations
can represent the effects of large deformations. These perturbations have been shown to
have no effect on infinitesimal. three-dimensional isotropic theory of elasticity. In contrast.
the same perturbations may yield flutter and non-propagation of wave modes in the loading
branch of infinitesimal elastoplasticity.

As a final remark. it can be noted that the analyzed instabilities can occur for high
values of plastic modulus. i.e. in the initial part of the plastic process. The instabilities can
therefore occur prior to loss of second order work positive definiteness and loss of ellipticity.

; In tim case. the algebraIC and geometrIC multiplicity of the double eigenvalue of tensor (90) coincide.



Flutter instability in elastoplastic constitutive models 3187

Acknol\'ledgments-The financial support of both the Italian Ministry of University and Scientific and Tech­
nological Research (M.U.R.S.T.) and the Italian National Council of Research (C.N.R.-Contr. 94.00008.CT07)
is gratefully acknowledged.

REFERENCES

An, L. and Schaeffer. D. (1992). The flutter instability in granular flow. 1. Mech. Phys. Solids 40,683-698.
Asaro. R. J. and Rice. J. R. (1977). Strain localization in ductile single crystals. 1. Mech. Phys. Solids 25,309­

338.
Bardet, J. P. (1991). Analytical solutions for the plane-strain bifurcation of compressible solids. J. Appl. Mech.

58,651--657.
Bigoni, D. and Willis. J. R. (1994). A dynamical interpretation of flutter instability. In Localisation and Bifurcation

Theory ()(Rock and Soils (Edited by R. Chambon. J. Desrues and I. Vardoulakis), pp. 51-58. A. A. Balkema
Scientific Publishers. Rotterdam.

Bigoni, D. and Zaccaria. D. (1992). Stability in Mandel sense for elastoplastic solids at finite strains. In Proceedings
o(the XI International Congress AIMETA. pp. 35-40.

Bigoni. D. and Zaccaria, D. (1994). On eigenvalues of the acoustic tensor in elastoplasticity. Europ. J. Mech.­
part A, 13,621--638.

Bowen. R. M. and Wang. c.-c. (1976). Introduction 10 ['('ctors alld Tensors. Plenum Press, New York.
Brannon. R. M. and Drugan, W. J. (1993). Influence of non-classical elastic-plastic constitutive features on shock

wave existence and spectral solutions. 1. Mcch. PIll's. Solids 41,297-330.
Chau. K. T. (1992). Non-normality and bifurcation in a compressible pressure-sensitive circular cylinder under

axisymmetric tension and compression. Int. 1. Solids Structures 29, 801-824.
Chau. K. T. and Rudnicki. J. W. (1990). Bifurcations of compressible pressure-sensitive materials in plane strain

tension and compression. 1. Mech. Ph,·s. Solids 38, 875-898.
Del Piero, G. (1979) Some properties of the set of fourth-order tensors. with application to elasticity. J. Elasticity

9, 245-261.
Del Piero. G. (1989). Constitutive equation and compatibility of the external loads for linear elastic masonry-like

materials. Meccanica 24, 150-- 162.
Gurtin. M. E. (1981). An Introduction 10 CO/1/illllllm Mechanics. Academic Press, f\ew York.
Hill. R. (1958). A general theory of uniqueness and stability in elastic- plastic solids. 1. Mech. Phys. Solids 6,236­

249.
HilL R. (1962). Acceleration wa\es in solids. 1. Mech. Phys. Solids 10, 1-16.
Hill, R. and Hutchinson. J. W. (1975). Bifurcation phenomena in plane tension test. 1. Mech. Phys. Solids 23,

239264.
Hill, R. (1978). Aspects of invariance in solid mechanics. In Adul!1ces in Applied Mechanics (Edited by Chia-Shun

Yih). Vol. 18. pp. 1--75. Academic Press. New York.
Hutchinson. J. W. (1973). Finite strain analysis of elastic-plastic solids and structures. In Numerical Solutions o(

Nonlinear Structural hohlems (Edited by R. F. Hartung). pp. 17-29. ASME. New York.
Hutchinson, J. W. and Miles. J. P. (1974). Bifurcation analysis of the onset of necking in an elastic/plastic cylinder

under uniaxial tension. 1. Mech. Pins. Solids 22, 6171
Loret. B. (1992). Does deviation from deviatoric associativity lead to the onset of flutter instability'l. J. Meck

Phs. Solids 40. 1363-1375
Lorei. B. and Hariereche, O. (1991). Acceleration waves. flutter instabilities and stationary discontinuities in

inelastic porous media. J .."vtech. Phs. Solids 39, 569-606.
Loret. B., Prevost, J. H. and Hariereche. O. (1990). Loss of hyperbolicity in elastic-plastic solids with deviatoric

associativity. Eur. J. Mech. A Solids 9, 225 231.
Maier. G. and Hueckel. T. (1979). Non associated and coupled flow-rules of elastoplasticity for rock-like materials.

Int. 1. Rock M('ch. Mill. Sci. 16,77-92.
MandeL 1. (1962). andes plastiques dans un milieu indefini ,i trois dimensions. J. de Mecanique 1, 3--30.
Mandel. J. (1966). Conditions de stabilite et postulat de Drucker. In Rheology and Soil Mechanics (Edited by J.

Kravtchenko and P. M. Sirieys). pp. 58-68. Springer. Berlin.
Needleman, A. and Rice. J. R. (1978). Limits to ductility set by aplastic flow localization. In Mechanics a/Sheet

lHewl Forming (Edited by D. P. Koistinien and N. M. Wang), pp. 237--267. Plenum Press. New York.
Ogden, R. W. (1984). NOll-linear Elastic De/ormations. Ellis Horwood. Chichester.
Raniecki, B. (1979). Lniqueness criteria in solids with non-associated plastic flow laws at finite deformations,

Bull. Acad. Polon. Sci. Ser. Sci. Tech. XXVII (8-9). 391 399.
Raniecki, B. and Bruhns, O. T. (1981). Bounds to bifurcation stresses in solids with non-associated plastic flow

law at finite strain . .I. ,Vlech. Pin'S. Solids 29,153-171.
Rice. J. R. (1976). The localizati~n of plastic deformation. In Theoretical and applied Mechanics (Edited by W.

T. Koiter), pp. 207-220. North-Holland, Amsterdam.
Rice, J. R. and Rudnicki. J. W. (1980). A note on some features of the theory oflocalization of deformation. lilt.

J. Solids Structures 16. 597--605.
Rudnicki. J. W. and Rice. J. R. (19751. Conditions for the localization of deformations in pressure-sensitive

dilatant materials. 1. Mech. Phrs. Solids 23, 371 394.
Salce. L. (1993) Lecture .Yotes ()Ii .Hatri\" Al.ljehra. (in Italian). Zanichelli:DecibeL Bologna.
St6ren. S. and Rice. J. R. (1975). Localized necking in thin sheets. J. Mceh. Phys. Solids 23, 421--441.
Truesdell, C. and Noll. W. (1965). The non-linear field theories of mechanics. In Encyclopedia 0/ Phrsics (Edited

by Fliigge). Vol III 3. Springer-Verlag. Berlin.
Vardoulakis. I. (1981). Bifurcation analvsis of the plane rectilinear deformation on dry sand samples. Int. 1. Solids

Structures 11, 1085110 I.
Vardoulakis. I. (1983) Rigid granular plasticity Illodel and bifurcation in the triaxial test. Acta Mech. 49, 57­

79.



31KK D. Bigoni

Vardoulakis. I.. Goldscheider. M. and Gudehus. G. (1978). Formation of shear bands in sand bodies as a
bifurcation problem. Int. 1. Num. Allal. Merh. Geomech. 2, 99-128.

Wilkinson. J. H. (1965). The Algehraic Eigenralue Prohlem. Clarendon Press. Oxford. U.K.
Ziegler. H. (1956) On the concept of elastic stability. In Adwnces of Applied Mechallics (Edited by H. L. Dryden

and Th. von Karman). pp. 352-403. Vol. IV. Academic Press. New York.

APPENDIX A

Vector q is £I left e(q('llwlue of Adn) in ('quation (46)
It is assumed that a, x q = O. Projecting the eigenvalue problem (46) onto the dual bases ai' a,. a, and ai, a\

a' (note that the modulus of left and right eigenvectors a, and a' of Adn) will be taken in a proper way to satisfy:
a,' al = 6;) the characteristic equation is readily obtained

\
:x, - -p'q-IJ 0 0

r;

1
det --(p·a.)(q·a') :x,-') 0 = O. (A.I)

r;

\ ,
0- _(po a,)(q' a') :Xl-I)

r;

From (A.\) it can be concluded that flutter is not possible when q is a left eigenvector of AE(n). Non-propagation
instability can occur if p is not parallel to a, and when the plastic modulus equals one of the two critical plastic
moduli .

p'q p'q
'!L'I=---'

:Xl -:x~
(A.2)

APPENDIX B

f)eterl1lillutioll o!eigellra/ues of the ucoustic tellsor (75)
The eigenvalues :XI and :x, can be obtained from tensor (75) by direct inspection. The eigenvalue :x, can be

obtained as follows. Let us search for the eigenvector a' in the plane containing vectors nand t; therefore:

(B.I)

where coefficients f!, are the components of a'. By definition of the right eigenvector:

(8.2)

By using the definItion (75) of AE(n) in eqn (B.2). the eigenvalue and the components of the eigenvector are
obtained:

(8.3)

(B.4)

APPENDIX C

!Jetermillutioll of the leI/ ei(lellrector (78)
The left eigenvector (78) is associated wIth the eigenvalue i + 2/1. Hence

For t * n. it is possible to represent al in the basis formed by the three orthogonal unit vectors

(CI)

n x t
n, I = ------c and

In x tl

n x (n x t)
m=

!nx(nxt)I'
as: (C2)

where the f!, are the relevant (unknown) components. In order to satisfy the condition a, . a' = I, f3, = I is selected.
Morenver. a subslItutionnf eqns (75) and (C.2) into eqn (C.\) yields a vectorial equation which may be projected
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onto the basis n. I and m. This projection gl\es t\\O scalar equations in the unknowns fie and fi,. The solution to
these eq uations is :

fi, = O. fi, = - I
)

* It" n)lt" m).
/1

(e3)

where p* is given by eqn (7'1) Keeping the following properly InlO account·

nxln"l! ~(t"nln (n"n)L

the eigenvector 3, is obtaincd. in the form OS)

(CA)


